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The axisymmetric problem of the propagation of unsteady waves in an elastic medium bounded by 

spherical surfaces with offset centres is considered. The problem of the propagation of waves in 

continuous media bounded by surfaces of different coordinate systems has been investigated fairly fully 

mainly in the steady-state formulation [l]. Some unsteady problems for a half-space with spherical 

inclusions were investigated in [2,3]. 

1. FORMULATION OF THE PROBLEM 

Suppose a linearly elastic uniform isotropic medium is bounded by two eccentric spherical 
surfaces. The radius of the external surface is R, and the radius of the internal sphere is 4. 
The distance between the centres of the spheres is 6(R, > R, + 6). 

Two spherical systems of coordinates are employed: the origin of the first system (q, 0,, 6,) 
is at the centre of the internal sphere (cavity), while the origin of the second (T*, 8,, 19,) is at 
the centre of the external sphere. 

Axisymmetrical surface loads 

are applied to the surface of the spherical cavity, or the displacements 

are given. 
There are no stresses on the external sphere 

01’2 q=/$ = ” %,la=R2 = ’ 
or the displacements are zero 

(1.2) 

(1.3) 

u2 tyR2 =a u21r2,9 =o (1.4) 
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Here u,, ui and o,~ are the normal and tangential components of the displacement vector 
and the components of the stress tensor in the systems of coordinates (I;, &, Si), i = 1,2. 

Taking the axial sy~etry into account, the pert~bed motion of the elastic medium satisfies 
the following wave equations with respect to the scalar component cp and the non-zero 
component w of the vector potential of the displacements 

where Ai is the Laplace operator in the corresponding system of coordinates. 
The initial conditions are assumed to be homogeneous 

The displacements ui and ui and the stresses oaa are related to the potentials 9 and v by 
well-known relations of the linear theory of elasticity [4]. 

In (l.l)-(1.6) and henceforth we have used the following dimensionless parameters (the 
primes denote dimensional quantities) 

where R is a certain characteristic linear dimension, c, and c, are the velocities of the 
extension~ompression wave and the shear wave, h and l.t are the elastic Lame constants, and t 
is the time. 

2. THE METHOD OF SOLUTION 

The initial boundary-value problem (l.l)-(1.6) is solved by the method of incomplete 
separation of variables using an integral Laplace’transformation with respect to time z (S is the 
transformation parameter and the superscript L corresponds to the transformant). 

We will represent the components of the stress-strain state of the medium and the right- 
hand sides of the boundary conditions (1.1) and (1.2) in transformation space in the form of 
series in Legendre polyno~als ~~(~0~0~) and ~egenbauer ~lyno~als C~~(c~ei) (i = 1,Z) 
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The boundary conditions 
take the following form 

(l.l)-(1.4) with respect to the coefficients of the expansions then 

(2.1) 

(2.2) 

(2.3) 

r&n ?=a2 (2.4) 

In Laplace transformation space the potentials of the displacements rp and w can be written 
in the form 

q# = 5 A;(s) 
n=O 

: $0) 
p=o 

(2.5) 

where K,(X) and Iv(x) are modified Bessel functions, and e(s), B;(S), C:(S), and D;(S) are 
unknown functions of the parameter S. 

Using the addition theorem for the functions I,+&) and K,,+,&) [S], taking into account 
the expressions for these functions in terms of elementary function [4], and also the relation 
between the displacements, the stresses and the potential in a spherical system of coordinates, 
we obtain the following formulae for the coefficients of the series u,:, u,L, c&, and o$, 

L 
qn(qr@= r, -n-2~-” Rno(qs)A,f(s)ell + G,,(qs) f EG)(s)Bk(s) + 

p=o 

+q-“R,,(r,qs)C,f(s)q4 +n-‘(n+ l)-‘q-“G,,(eqs) z 
p=l 

H$)(s)Dk(s) 1 

(2.6) 

(2.7) 

+dn+ l)tl-“Q,2(r,?s)C,L(s)e,Q +7VJn2(q~s) f 
p-l 

~$,b)D,$) 
I 
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where 

E”‘(S) = .rp C(‘)(s)e v 12 H:‘(s) = StL)(s)e,5 - Sc2)(s)e 
v np 16 

elI =e -4s , e12 =e 8s , q3 =e -89 
, e14 =e -VW , e15=e hs, e ,6 = e-h,’ 

The polynomials Z?,&) (i = 0, 1, 3) and Qnj(s) (j = 1, 2, 3) used in (2.6) and (2.7) are 
connected with the representations of modified Bessel functions and are defined in [4], while 
the functions GJs), JJs) (k= 1, 2,3) and C:(s), St:(s) (Z=l, 2) have the following form 

G,(S)= Itti(- - Rd(s)eeS, J&(s)= Q,(-s)eS - Qnk(s)ems 

q(s) = (-1):: + 1) pg @OPO’ _L$ ho = [(_l)‘&] 
a=lp-nl 

c$O(s) = (-1)p(2n+ l) ‘F b(nlpl) &E(-l)‘6tlsl 
np ms 

a 
a=lp-nl @WY 

(2.8) 

where by1 (i = 0, 1) are the Clebsch-Gordan coefficients [5]. 
The expressions for the coefficients of the series z&, I$“, obn and criezn are similar to (2.6) 

and (2.7) and can be obtained from the latter if we interchange the coefficients 4” and Bf, C,L 
and II,“, and also replace r, by r,, EC and Hz by E$ and H$, Z?,,(r,nk,s) by (-l)“G,(r,q,s) 
and G,JvIs) by &(r,rl,s) (ql=l, ~2 = n; i = 0, 1,3h Qnj(qqks) by (-l)“Jnj(r~~,s) and Jnj(qr\s) 
by Qnj(rZW) (i = 1, 2, 319 e,, and e,, by (m = l-6). Here the last quantities are defined as 
follows: 

e2, =e24 =l, e22=e -(Q-6fs 

e23=e -(1+6)s , ez=e 4%~6bls 41+6bls 
1 ez =e (2.9) 

Substituting the coefficients (2.6) and (2.7) into the boundary conditions (2.1)-(2.4), we 
obtain an infinite system of linear algebraic equations in the unknown functions A:(s), B:(s), 
C,“(s) and D:(s) 

M(‘)Au2wa + N”‘Cuw2zt + T,“‘Bwt+ T,‘2’Bwz2t - T,(3)Bu2wf + T;4’Bu2~z2t + 

+T,‘5’mz -,T;6’~~2 - T,‘7’Duw2z + ~*bhv2uzt2 = K”‘uwzt 

M’2’A~2~zt + N’2’Cuw2zt + T$‘)Bwt - T$2’B~z2t - T$3)Bu2wt + T~4’B~2z2r + 

+T;%z - T;%zt2 - T$7)Dw2t + T;*hhv2~zt2 = K’2’uwzt 

L\“Byzt - L’2’Bx2yzf + F{“Ax2yt - F/2’Ax2yz2t + L(j3’Dxzt - 

-L’;“Dxy2zt + F~3kxy2~ - Ff4kxy2zt2 = 0 

L’:‘Bys - L’,?‘Bx’yzt + F$kx2yt - F$2’&2yz2r + L’2)Dxyzt - 

-L:q’D.xy2zt + F;3’Cxy2~ - Fj4’Cq2zt2 = 0 

x=emRzs, y=eeRZqS, 2)=e-@, w=beRIqs, Z=q3, t=q6 

(2.10) 
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where q(i) and $“) are infinite matrices with elements T’?(s) and F$(s), M(‘?, N(j) and I,‘,) 
are infinite diagonal matrices with elements M!)(S), N?(S) and 2$)(s) (i = 1-8; j= 1, 2; 
k = l-4); Kc0 are infinite columns with elements K~)(.s) (l= 1, 2), and A, 3, C and D are 
infinite unknown columns with elements x(s), B:(S), C,“(S) and I),L(s), 

In the case of boundary conditions (2.1) and (2.3) (the axisymmetric surface load is specified 
on the inner sphere while the outer sphere is free from stresses), the elements of the matrices 
T:‘, MC”, N(j) and of the columns Kc’) have the form 

z&‘y”‘(s) = Qa3(-4q~)si;)(~), T-;m)(s)r Qn3(-4Ts)s(m)(s. (m=1,2j 

n(n + l)rl” n(n + I)$ =p 
(2.11) 

M”‘(s) = n Q,,,tR,s) , 

@‘W = QnzU-4~) R , 

N”‘(s) = q-*n(n+ l)&(R,qs) n 

j’+2’W = rl-“&(R,w) n 

K;“(s) = R~+3s~~~(s), K:*‘(s) = R~+3sn~~(s) 

while the elements of the matrices <!‘) and Ly’ are given by 

@z’(s) = Q~j(R2S)C<,“‘(S), $f~m)(~) = rt-“Qnz ~&w)$‘(J) 

F$“’ (s) = 6’(n + 1)-‘~-nQ~,(R2?s)~~t(s) (m = 1,2) 

(2.12) 
L;)(s) = (-I)“&(-R,s), L;;‘(s)= n(n+l)(-q)“Q,2(-R2~s) 

Gus = ~-~)~Q~~(-R2~s), ~~~~)(s) = ti;‘-i)(-S) (j;k = 1,2) 

If, instead of boundary conditions (2.3), we consider the conditions (2.4), then, we must 
replace the following polynomials in relations (2.12): Q,, by R,,l, Q,,2 by R.,,, and Q,,3 by Rn3. If 
we use conditions (2.2) instead of boundary conditions (2.1), then in (2.11) similar 
replacements are carried out, and the elements of the columns K,, have the form 

K(i)(s) = -R;r+VUL(S) n ” ’ K’2’(s) R = -Rf’+2~nk$(~) (2.13) 

Note that the elements of all these matrices and vectors are rational functions of the 
transformation parameter s. 

In view of the length of the explicit formulae we will obtain a solution of system (2.10) for 
the special case of an acoustic medium. 

3.AN ACOUSTICMEDIUM 

Passing to the limit as rl*= (K + 1) we obtain from (2.10) an infinite system of linear 
algebraic equations in the unknown coefficients At(s) and B,!‘(S) for an acoustic medium 

MAu’z + T”‘B- T’*‘Bu2 - Tc3)Bz2 + T’4’B~2z2 = Zuz 

L’*‘& - L’2’&2z + F”‘b2 _ F’2’&2z2 = 0 (3.1) 



Here 
infinite 

T(‘) and fik) are infinite matrices with elements T’,:(s) and F:‘(s), M and L”’ are 
diagonal matrices with elements M,(s) and X$?(s) (d = I - 4; k = 1, 21, and 2 is an 

infinite column with elements Z,(s). In the case of different h~~ary c~~ditiuns in 
accordance with (2.11) and (2.12) the elements d these matrices have the fu~~~~~ furnx 

(a) an axisymmetric pressure h(z, 0,) is applied to the surface of the cavity r, = RI 

$%e = $?fsl = 4flCRZ s cg)(s), 1 d?p”““(s) = L$‘(s) (m = 13) 

L”‘(S) = Lf’(-s) = (-1)” R”J (4,s) n 

of the system of equations (3.1) can be represented in the frrrm of series in 

(3.2) 

Substituting series (3.2) into (3.1) and equating the coefficients of like powers of the 
variables x, 2) and z we obtain recurrent relations for the coefficients ug’(s), bg)(s} (l= 1, 2; 
4=0,1,2,...) 
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(ia0, ka 1) 

(i20, k2 1, n> 1) 

Here it is formally assumed that @($,,(s) = 0 (i b 0, n 2 0). The rational functions X,(s) and 
Y,(s) in (3.3) have the following form 

X,(s) = Rq,(&) / Rq, (--Q), y,(s) = M,(--r) / M,(s) 

Passing to the limit as 7 + m (K + 1) in expressions (2.9) for the coefficients a&,(r,, S) and 
taking the solution (3.2) into account we obtain the following explicit formula for the coeffici- 
ents pt(r,, S) of the expansion of the pressure p = -cJ,,~, in series in polynomials P, (cos Cl,) 

lJqL(q.s)=&, 2 R,oW - 
r, r.k,n=O I p [ a,y(s)z* +~~~q’(s)z-“-‘]xiu-k-le,, + 

+ G$(-:Is) g ($(s)[b!$‘)(s)z”-’ + b~~P)(s)Z-n-*]ni~-k-l _ 
p-0 

G,,(v) - 
-34-2 C CgJ(s)[b2pj(s)zn+’ + b$P)(s)Z-n]Xi~-k-’ 

p=O 
(3.4) 

Hence, formulae (3.4) together with the recurrent relations (3.3) enable us to obtain a 
solution of the problem without using reduction to an infinite system (3.1). For a fixed number 
of terms in the series with respect to the angle 8, for the pressure, the coefficients in (3.4) are 
the product of rational and exponential functions of the parameter S. Their originals can be 
calculated in explicit form using appropriate theorems of the operational calculus. 

Note that for an elastic medium the solution of system (2.12) can be represented in a form 
similar to (3.2)-(3.4) but the recurrent relations (3.3) have a more complex form. 

4. EXAMPLE 

As an example of the use of the above algorithm we will present the results of calculations 
for an acoustic medium with an internal cavity of radius RI = 1, on which a pressure of the form 
p,(z, 0,) =p,,,,H(z), is given, where H(z) is the unit Heaviside function. 

The velocity is zero on the external surface R, = 2. The offset of the centres of the sphere 
6=0.5. 

The continuous curves in Fig. 1 are graphs of the change of the pressure with time in the 
medium, obtained taking four terms of the series in the angle 0, into account, at the following 
points r, =1.2 and 8, =x (curve l), r, =1.4 and 8, =R (curve 2), and r, = 1.5 and 8, =5c 
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0 I 2 

Fig. 1. 

(curve 3). The dashed curves correspond to the results obtained by retaining the first three 
terms of the series in the angle 8, with parameters corresponding to curve 1. By comparing 
these curves it can be seen that the series converge fairly rapidly. 
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